Computer-Based Data Visualization Analysis for Simplifying Complex Information

Penulis

  • Salsabila Nasution Universitas Islam Negeri Sumatera Utara Author
  • Fatwa Aulia Universitas Islam Negeri Sumatera Utara Author
  • Saprina Putri Utama Ritonga Universitas Islam Negeri Sumatera Utara Author
  • Anggi Jelita Sitepu Universitas Islam Negeri Sumatera Utara Author
  • Supiyandi Supiyandi Universitas Pembangunan Panca Budi Author

DOI:

https://doi.org/10.64803/ikosstemi.v1.43
   

Kata Kunci:

Computer visualization, global temperature data, Python, climate change, big data analysis

Abstrak

This study aims to analyze global temperature data by employing computer visualization as a tool to simplify complex information. The dataset was obtained from Kaggle, specifically the Global Land Temperatures by City dataset, which contains monthly average temperature data from various cities worldwide. The methods applied include data preprocessing, descriptive statistical analysis, and data visualization using the Python programming language with the Pandas, Matplotlib, and Seaborn libraries. The visualization results reveal an upward trend in the global average temperature from 1900 to 2020, with an increase of approximately 1°C, indicating the occurrence of global warming. Computer visualization has proven to be effective in helping researchers and policymakers better understand temperature change patterns compared to numerical table-based analysis. Therefore, this study emphasizes that the application of computer visualization is an efficient solution for presenting and analyzing large-scale data, making it more interpretable.

Referensi

Adam, M. F. S., Putra, B., & Puteri, S. I. (2025). Eksplorasi dan Analisis Data Mining untuk Prediksi Pola Konsumen. https://prosiding. sentimeter. nusaputra.ac.id/index.php/prosiding/article/view/66

Ardian, Z., & Ainy, W. N. (2025). ANALISIS DAN VISUALISASI DATA MONITORING DAFTAR TUNGGU PELANGGAN PT PLN ( PERSERO ) UP3 LHOKSEUMAWE MENGGUNAKAN GOOGLE LOOKER STUDIO Analysis and Visualization of Customer Waiting List Monitoring Data at PT PLN ( Persero ) UP3 Lhokseumawe Using Google Loo. 11(1), 148–154.

Darma, S. (2024). Analisis Visualisasi Arsitektur dalam Perencanaan Kota. 1–10.

Dr. Adi Nugroho, S. T. M. M. S. I. (2024). Data Science Menggunakan Bahasa R: Deep Learning. Penerbit Andi. https:/ /books. google.co.id/ books?id =EkgsEQAAQBAJ

Elvania, N. C. (2025). BUKU AJAR PENGOLAHAN AIR BERSIH. Penerbit Widina. https://books.google.co.id/books?id=sghMEQAAQBAJ

Fasadena, N. S., Riono, S. H., Hadiatullah, D. R., Jumasa, H. M., Ganiem, L. M., Nurul Fadhillah S, Anwar, K., Wali, M., Rohmah, N. L. N., & Ali, M. M. (2025). Cyber Media.

Ghivary, R. Al, Wulandari, N., Srikandi, N., Publik, D. A., & Jakarta, U. M. (2023). Peran Visualisasi Data Untuk Menunjang Analisa Data the Role of Data Visualisation To Support Population. Jurnal Administrasi Publik, 1(1), 57–62.

Johannes Kurniawan. (2023). Analisis Dan Visualisasi Data. In Angewandte Chemie International Edition, 6(11), 951–952. (Vol. 3, Issue 1). https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf

Nurwati, N., Dalimunthe, R. A., Apriandani, B., & Pebriani, E. (2025). Pengenalan Konsep Big Data Dan Analisis Data Untuk Siswa Sma. Jurnal Pemberdayaan Sosial Dan Teknologi Masyarakat, 5(1), 254. https://doi.org/10.54314/jpstm.v5i1.3826

Santhi, T. (2023). https://ejurnal.umri.ac.id/index.php/SEIS/index e-ISSN: 2809-0950. Jurnal Software Engineering and Information System, 3(2), 66–73.

Saputra, P. S., Putra, Y. D., Bali, P. N., Udayana, U., & Korespondensi, P. (2025). EKSPLORASI DATA WINE PUTIH DAN KARAKTERISTIK KIMIAWI EXPLORING WHITE WINE DATA AND CHEMICAL CHARACTERISTICS USING. 4(2), 1–6.

Setyawan, F. E. B. (2025). Metode Penelitian Konsep dan Analisis. UMMPress. https://books.google.co.id/books?id=SZJdEQAAQBAJ

Diterbitkan

2025-11-06

Terbitan

Bagian

Articles

Cara Mengutip

Computer-Based Data Visualization Analysis for Simplifying Complex Information. (2025). Prosiding Seminar Nasional Ilmu Komputer, Sosial Sains, Teknik Dan Multi-Disiplin Ilmu, 1, 29-33. https://doi.org/10.64803/ikosstemi.v1.43