Proxmox-Based Virtualization Techniques on Virtual Servers
DOI:
https://doi.org/10.64803/cessmuds.v1.68Keywords:
proxmox, virtual server, virtual machine, container, cloud computingAbstract
Server virtualization is one of the key solutions in modern IT infrastructure management, offering resource efficiency, cost reduction, and operational flexibility. Proxmox Virtual Environment (Proxmox VE) combines KVM (Kernel-based Virtual Machine) technology for virtual machines (VMs) and LXC (Linux Containers) for containers. This study aims to evaluate the implementation of Proxmox VE in server virtualization, focusing on resource usage and service availability. Through experiments conducted on virtual infrastructure, it was shown that Proxmox VE is effective in managing multiple VMs and containers simultaneously. System evaluation has revealed that Proxmox VE can reduce the number of physical servers required, thereby saving costs and space. The high-availability clustering feature in Proxmox VE has been proven to improve service availability. This study concludes that Proxmox VE is an efficient, flexible, and cost-effective virtualization solution for environments that require server consolidation and improved service availability.
References
Amin, N. U., Shahzad, A. D., Hamza Abid, M., Yamin Muiz, M., Suleimanov, T., & Abdul Razick, M. S. (2025). The Role and Application of Hypervisors in Modern Organizations. 0–14. https://doi.org/10.20944/preprints202501.1355.v1
Ariyanto, Y. (2023). Single Server-Side and Multiple Virtual Server-Side Architectures: Performance Analysis on Proxmox Ve for E-Learning Systems. Journal of Engineering and Technology for Industrial Applications, 9(44), 25–34. https://doi.org/10.5935/jetia.v9i44.903
Bompotas, A., Kalogeropoulos, N. R., & Makris, C. (2025). CommC: A Multi-Purpose COMModity Hardware Cluster. Future Internet, 17(3). https://doi.org/10.3390/fi17030121
Chepurna, I., & Frolov, D. (2025). a Method for Increasing the Productivity of a Distributed Firewall Based on Proxmox in Corporate Computer Networks. Innovative Technologies and Scientific Solutions for Industries, 2025(3), 180–188. https://doi.org/10.30837/2522-9818.2025.3.180
Đorđević, B., Janjić, K., & Kraljević, N. (2025). Mathematical Modelling and Case Study with File System Performance Comparison for Linux-based Hypervisors. Acta Polytechnica Hungarica, 22(1), 101–121. https://doi.org/10.12700/aph.22.1.2025.1.6
Doukha, R., & Ez-zahout, A. (2025). Enhanced Virtual Machine Resource Optimization in Cloud Computing Using Real-Time Monitoring and Predictive Modeling. International Journal of Advanced Computer Science and Applications, 16(2), 658–664. https://doi.org/10.14569/IJACSA.2025.0160267
Ferro, L., Bravi, E., Sisinni, S., & Lioy, A. (2026). Privacy-Preserving Container Attestation. Journal of Network and Systems Management, 34(1), 1–28. https://doi.org/10.1007/s10922-025-09982-5
Guo, Y., Wei, L., Fan, C., Ma, Y., Zhao, X., & He, H. (2025). Joint Optimization of Container Resource Defragmentation and Task Scheduling in Queueing Cloud Computing: A DRL-Based Approach. Future Internet, 17(11). https://doi.org/10.3390/fi17110483
Iliadis-Apostolidis, D., Lawo, D. C., Kosta, S., Monroy, I. T., & Olmos, J. J. V. (2025). QRoNS: Quantum Resilience over IPsec Tunnels for Network Slicing †. Electronics (Switzerland), 14(21), 1–26. https://doi.org/10.3390/electronics14214234
Jawed, M. S., & Sajid, M. (2022). A Comprehensive Survey on Cloud Computing: Architecture, Tools, Technologies, and Open Issues. International Journal of Cloud Applications and Computing, 12(1), 1–33. https://doi.org/10.4018/IJCAC.308277
Jin, Y., Wen, Y., & Chen, Q. (2012). Energy efficiency and server virtualization in data centers: An empirical investigation. Proceedings - IEEE INFOCOM, 133–138. https://doi.org/10.1109/INFCOMW.2012.6193474
Ketha, K. S., Song, G., & Zhu, T. (2025). Analysis of Security in OS-Level Virtualization. 2–7. http://arxiv.org/abs/2501.01334
Kummara, R. (2025). Server Virtualization: Transforming Modern IT Infrastructure. European Journal of Computer Science and Information Technology, 13(13), 1–13. https://doi.org/10.37745/ejcsit.2013/vol13n13113
Lakhno, V., Alimseitova, Z., Kalaman, Y., Kryvoruchko, O., Desiatko, A., & Kaminskyi, S. (2023). Development of an Information Security System Based on Modeling Distributed Computer Network Vulnerability Indicators of an Informatization Object. International Journal of Electronics and Telecommunications, 69(3), 475–483. https://doi.org/10.24425/ijet.2023.146495
Lee, J. (2013). A view of cloud computing. International Journal of Networked and Distributed Computing, 1(1), 2–8. https://doi.org/10.2991/ijndc.2013.1.1.2
Mavridis, I., & Karatza, H. (2019). Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems, 94, 674–696. https://doi.org/10.1016/j.future.2018.12.035
Queiroz, R., Cruz, T., Mendes, J., Sousa, P., & Simões, P. (2024). Container-based Virtualization for Real-time Industrial Systems - A Systematic Review. ACM Computing Surveys, 56(3). https://doi.org/10.1145/3617591
Radchenko, G. I., Alaasam, A. B. A., & Tchernykh, A. N. (2019). Comparative analysis of virtualization methods in Big Data processing. Supercomputing Frontiers and Innovations, 6(1), 48–79. https://doi.org/10.14529/jsfi190107
Šimon, M., Huraj, L., & Búčik, N. (2023). A Comparative Analysis of High Availability for Linux Container Infrastructures. Future Internet, 15(8). https://doi.org/10.3390/fi15080253
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rahmadani (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





