Sentiment Analysis of Reviews from Google Play: Azur Lane, Genshin Impact, Arknights

Authors

  • Kardandi Alfarizi Siregar Universitas Islam Negeri Sumatera Utara Author
  • Bhagaskara Cahyadi Universitas Islam Negeri Sumatera Utara Author
  • Legiman Samosir Universitas Islam Negeri Sumatera Utara Author
  • Alfani Azhard Universitas Islam Negeri Sumatera Utara Author
  • Supiyandi Universitas Pembangunan Panca Budi Author

DOI:

https://doi.org/10.64803/cessmuds.v1.33
   

Keywords:

Sentiment Analysis, Mobile Games, Support Vector Machine, Google Play Store, User Reviews

Abstract

Sentiment analysis of user reviews for mobile games is essential for understanding player perceptions of a game. This study focuses on sentiment analysis of user reviews for three popular mobile games: Azur Lane, Genshin Impact, and Arknights, using the Support Vector Machine (SVM) algorithm. The objective of this research is to classify reviews into three sentiment categories: Positive, Negative, and Neutral. Data was collected through web scraping from the Google Play Store, with a total of 6,000 reviews analyzed. The data preprocessing steps included cleaning, tokenization, stopword removal, and stemming, followed by TF-IDF feature extraction. The results show that the SVM model achieved an accuracy of 79.50%, with the best performance for Positive and Negative sentiments, but struggled with Neutral sentiment classification. The sentiment distribution revealed that Azur Lane had a higher proportion of Negative reviews compared to Genshin Impact and Arknights, which received predominantly Positive feedback. This study provides insights into the potential of using SVM for sentiment analysis in mobile games, and highlights areas for improvement, such as better handling of Neutral sentiment through more advanced models or balanced datasets.

References

Arsi, P., Subarkah, P., & Kusuma, B. A. (2023). Analisis Sentimen Game Genshin Impact pada Play Store Menggunakan Naïve Bayes Clasifier. JURNAL ILMIAH TEKNIK MESIN, ELEKTRO DAN KOMPUTER (JURITEK), 3(1), 161–170.

Aryani, T. (2019). Ini Kantai Collection Tapi Lebih Baik (Ringkasan & Panduan Azur Lane). https://medium.com/@aryaniryan44/its-kantai-collection-but-better-an-azur-lane-rundown-guide-26f7efa1f96a

Effendi, P. A., & Ernawati, T. (2025). ANALISIS SENTIMEN ULASAN APLIKASI GAME HAY DAY MENGGUNAKAN ALGORITMA RANDOM FOREST. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3S1). https://doi.org/10.23960/jitet.v13i3S1.6772

Fadhilah, S. N., & Utomo, F. S. (2024). Algoritma Naïve Bayes untuk Analisis Sentiment Review Blibli.com di Google Play Store Naïve Bayes Algorithm for Sentiment Analysis of Blibli.com Review on Google Play Store. SISTEMASI: Jurnal Sistem Informasi, 13(2), 831–840. http://sistemasi.ftik.unisi.ac.id

Febrianta, M. Y., Widiyanesti, S., & Ramadhan, S. R. (2021). Analisis Ulasan Indie Video Game Lokal pada Steam Menggunakan Analisis Sentimen dan Pemodelan Topik Berbasis Latent Dirichlet Allocation. Journal of Animation & Games Studies, 7(2), 117–144.

Jensen, B. (2020). Arknights Review – Tower Defense Waifus. https://noisypixel.net/arknights-review-ios/

Patel, D. (2025). Gacha Games Market. https://dataintelo.com/report/global-gacha-games-market

Puspitasari, O. (2023). Mengenal Game Mobile. https://www.kompasiana.com/oktavianipuspitasari2770/6513d7d54addee576168cab2/mengenal-game-mobile

Rahman, R. N., Rahim, A., & Pranoto, W. J. (2025). Analisis Sentimen Ulasan Game eFootball 2024 Pada Playstore menggunakan Algoritma Naïve Bayes. JURNAL ILMIAH INFORMATIKA (JIF), 13(1), 38–44.

Ramadhan, Z. F., & Mutiara, A. B. (2023). Sentiment Analysis of Honkai: Star Rail Indonesian Language Reviews on Google Play Store Using Bidirectional Encoder Representations from Transformers Method. International Journal of Engineering, Science and Information Technology, 3(3), 1–6. https://doi.org/10.52088/ijesty.v3i3.462

Published

2025-10-30

Issue

Section

Articles

How to Cite

Sentiment Analysis of Reviews from Google Play: Azur Lane, Genshin Impact, Arknights. (2025). Proceedings of The International Conference on Computer Science, Engineering, Social Science, and Multi-Disciplinary Studies, 1, 203-207. https://doi.org/10.64803/cessmuds.v1.33