Analysis of User Interaction Association Patterns in E-Learning Systems Using the Apriori Algorithm
DOI:
https://doi.org/10.64803/cessmuds.v1.30Keywords:
Data mining, E-learning, Association Patterns, User InteractionAbstract
The development of e-learning systems has generated a vast volume of user interaction data. Every activity—such as logging in, viewing materials, taking quizzes, and downloading assignments—contains valuable information that can be leveraged to enhance the effectiveness of online learning systems. This study aims to analyze user interaction association patterns in an e-learning system using the Apriori algorithm. A data mining approach was employed to identify relationships among features frequently accessed together, with a minimum support threshold of 0.4, minimum confidence of 0.6, and lift > 1.0. The dataset used consists of simulated (dummy) data representing seven user transactions and five main e-learning features. The analysis produced eight significant association rules with lift values above 1.0, indicating non-random relationships among features. Feature combinations such as {login} → {view_material} and {take_quiz} → {view_score} exhibited strong relationships, with confidence values reaching 0.75. These findings suggest the existence of dominant user interaction patterns that can be utilized to optimize navigation design, recommendation features, and overall user experience in e-learning systems. This research contributes to the application of the Apriori algorithm for exploring user access patterns in online education contexts, providing an analytical foundation for developing more adaptive and behavior-driven systems.
References
Agrawal, R., Imielinski, T., & Swami, A. (2024). Mining Association Rules between Sets of Items in Large Databases. Proceedings SIGMOD International Conference on Management of Data, 207–216. https://doi.org/10.1109/ICSESS.2014.6933618.
Aisha, D., & Kusumawati, R. (2022). Implementasi Metode Algoritma Collaborative Filtering Dan K-Nearest Neighbor Pada Sistem Rekomendasi E-Commerce. Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 2(3), 25–38. https://doi.org/10.55606/juisik.v2i3.314
Al Kerboly, D. M. A., Hamad, M. M., & Dawood, O. A. (2023). Web Mining Algorithms Applied To University Researchers Profiles: a Case Study. International Journal on Technical and Physical Problems of Engineering, 15(4), 123–133.
Dewi, A. O. P. (2020). Big Data di Perpustakaan dengan Memanfaatkan Data Mining. Anuva: Jurnal Kajian Budaya, Perpustakaan, Dan Informasi, 4(2), 223–230. https://doi.org/10.14710/anuva.4.2.223-230
Febiana, I., & Alda, M. (2024). Rekomendasi Tiket Travel Pada Cv Rimo Travel Berbasis Web. Jurnal SiSTEM INFORMASI DAN TEKNIK KOMPUTER, 9(1), 1–9.
Hasibuan, M., Diansyah, T., & Faisal, I. (2025). Penerapan Data Mining Untuk Mengidentifikasi Pola Asosiasi Peminatan Program Studi Menggunakan Algoritma Apriori. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 4, 380–388. https://doi.org/10.53513/jursi.v4i2.10851
Lois, J., Kurnia, Y., Lasut, D., & Fenriana, I. (2022). Aplikasi Pengolahan Data Mining Berbasis Web Menggunakan Algoritma Apriori Untuk Menganalisis Data Penjualan Toko Lumbini Mart. Jurnal Algor, 3(2), 12–24.
Malago, Y. (2023). Penentuan Pola Penjualan Obat Menggunakan Algoritma Apriori. Jurnal Ilmiah Ilmu Komputer Banthayo Lo Komputer, 2(1), 52–59.
Maulana, M. R., & Nurdiana, D. (2024). Pengukuran Kebergunaan dan Pengalaman Pengguna Website Sistem Informasi Akademik Universitas Terbuka (SIA UT) Menggunakan Metode System Usability Scale (SUS) dan User Experience Questionnaire (UEQ). Journal of Informatics and Communication Technology (JICT), 6(1), 1–17. https://doi.org/10.52661/j_ict.v6i1.325
Musdalifah, I., & Jananto, A. (2022). Analisis Perbandingan Algoritma Apriori Dan FP-Growth Dalam Pembentukan Pola Asosiasi Keranjang Belanja Pelanggan. Progresif: Jurnal Ilmiah Komputer, 18(2), 175–184.
Odu, N. B., Prasad, R., Onime, C., & Sharma, B. K. (2022). How to implement a decision support for digital health: Insights from design science perspective for action research in tuberculosis detection. International Journal of Information Management Data Insights, 2(2), 100136. https://doi.org/10.1016/j.jjimei.2022.100136
Prasetya, T., Yanti, J. E., Purnamasari, A. I., Dikananda, A. R., & Nurdiawan, O. (2022). Analisis Data Transaksi Terhadap Pola Pembelian Konsumen Menggunakan Metode Algoritma Apriori. INFORMATICS FOR EDUCATORS AND PROFESSIONAL : Journal of Informatics, 6(1), 43. https://doi.org/10.51211/itbi.v6i1.1688
Purba, E., & Harianja, A. P. (2024). Analisis Pola Kunjungan pada Objek Wisata Kabupaten Simalungun Dengan Menggunakan Algoritma Apriori Berbasis Website. SATESI: Jurnal Sains Teknologi Dan Sistem Informasi, 4(2), 146–155. https://doi.org/10.54259/satesi.v4i2.3244
Rizka, Pratama, H., Nabawy, P., Cahyadi, B., & Furqan, M. (2025). Analisis Pola Asosiasi Interaksi Pengguna pada Sistem Informasi Akademik Berbasis Web Menggunakan Algoritma Apriori. Data Sciences Indonesia (DSI), 5(1), 10–17. https://doi.org/10.47709/dsi.v5i1.5943
Rusdianto, D., Zaelani, L., Informasi, S., Teknologi, F., Universitas, I., Bandung, B., Informasi, S., Teknologi, F., Universitas, I., Bandung, B., Informasi, S., Teknologi, F., Universitas, I., & Bandung, B. (2020). IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI POLA PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS Jurnal Sistem Informasi , J-SIKA Volume 02 Nomor 02 , Desember 202. Jurnal Sistem Informasi, 02(02), 1–10. http://ejournal.unibba.ac.id/index.php/j-sika/article/view/376
Saputra, K. (2023). Perbandingan Kinerja Fungsi Kernel Algoritma Support Vector Machine Pada Klasifikasi Penyakit Padi. Ijccs, x, No.x(x), 1–5.
Sari, D. N., Adelia, F., Rosdiana, F., Butar, B. B., & Hariyanto, M. (2020). Analisa Sentimen Terhadap Review Produk Kecantikan Menggunakan Metode Naive Bayes Classifier. JIKA (Jurnal Informatika), 4(3), 109. https://doi.org/10.31000/jika.v4i3.3086
Saxena, A., & Rajpoot, V. (2021). A Comparative Analysis of Association Rule Mining Algorithms. IOP Conference Series: Materials Science and Engineering, 1099(1), 012032. https://doi.org/10.1088/1757-899x/1099/1/012032
Sriani, S., & Kurniawan R, R. (2019). Penerapan Metode Wavelet Co-Occurrence Histogram Untuk Pengenalan Objek Pada Citra Digital.
Widjaja, S. A., Maharani, H., & Yonata, Y. (2024). Sistem Informasi Penelitian dan Pengabdian kepada Masyarakat Berbasis Web di Perguruan Tinggi XYZ. Jurnal Telematika, 19(1), 22–28. https://doi.org/10.61769/telematika.v19i1.654
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rizka, Asro Hayati Berutu, Putri Nabawy, Haris Pratama, Supiyandi (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





