Understanding Adolescent Online Sexual Patterns Through Big Data Analysis

Authors

  • Yanti Yusman Universitas Pembangunan Panca Budi Author
  • Noor Anida Zaria Mohd Noor Universiti Pendidikan Sultan Idris Author

DOI:

https://doi.org/10.64803/cessmuds.v1.2
   

Keywords:

adolescents, online sexual risk behaviours, big data, social media, Padang-West Sumatra

Abstract

The rapid growth of digital technology and the increasing use of social media among adolescents in Indonesia, particularly in Padang, West Sumatra, have raised concerns about online sexual risk behaviors such as sexting, sharing explicit content, and unsafe interactions with strangers. Previous studies in Indonesia have largely relied on small- scale surveys, which are insufficient to capture the complex and dynamic nature of adolescents’ digital behaviors. This study aims to understand patterns of online sexual risk behaviors among adolescents in Padang through a big data analysis approach. Data were collected from popular social media platforms frequently used by teenagers and processed using text mining, natural language processing (NLP), and sentiment analysis. Clustering techniques and social network analysis were applied to identify behavioral patterns, interaction dynamics, and vulnerable groups. The findings reveal diverse patterns of behavior, ranging from curiosity-driven exploration to high-risk involvement influenced by peer pressure and exposure to sexual content online. Network analysis further indicates that digital communities play a significant role in shaping adolescents’ risky sexual behaviors in Padang. This study demonstrates that big data analytics provide a more comprehensive understanding compared to traditional survey methods, and highlights important implications for sexual health education, digital parenting strategies, and child protection policies at both local and national levels.

References

Aprinta, G., & Dwi, E. (2017). HUBUNGAN PENGGUNAAN MEDIA SOSIAL DENGAN TINGKAT KEPEKAAN SOSIAL DI USIA REMAJA CORRELATION OF SOCIAL MEDIA USES AND SOCIAL CONSCIOUSNESS LEVEL IN TEENAGERS. In THE MESSENGER (Vol. 9, Issue 1).

Bono, S. A., Othman, A., Jamaludin, S. S. S., Lim, M. Y., & Mohamed Hussin, N. A. (2024). The Impacts of Social Media on Adolescent Mental Health: Malaysian Adolescents’ Perspective. Malaysian Journal of Medicine and Health Sciences, 20, 40–46. https://doi.org/10.47836/mjmhs.20.s3.6

Chantika, Y., Fitria, L., & Sefriani, R. (2023). Pemahaman Siswa Terhadap Penyimpangan Perilaku Seksual Dikalangan Remaja SMK. Diajar Jurnal Pendidikan Dan Pembelajaran, 2(4), 464–471. https://doi.org/10.54259/diajar.v2i4.1989

Holmes, E. J. (2024). Safe Sexting, Sexual Orientation, and Gender: Risky Sexting in a Community Sample. Archives of Sexual Behavior. https://doi.org/10.1007/s10508-024-03050-w

Ika Devi Perwitasari, Jodi Hendrawan, & Yanti Yusman. (2025). Enhancing Student Competence Through Internships at SMEC Hospital in Medan: Soft Skills and Ethics Development. Jurnal Hasil Pengabdian Masyarakat (JURIBMAS), 4(1), 100–109. https://doi.org/10.62712/juribmas.v4i1.455

jurnal Analisis Pengaruh Media Sosial X Terhadap Sikap dan Perilaku Remaja Menggunakan K-Means Clustering 2024. (n.d.).

Khairul, K., Haryati, S., & Yusman, Y. (2018). Aplikasi Kamus Bahasa Jawa Indonesia Dengan Algoritma Raita Berbasis Android. Jurnal Teknologi Informasi Dan Pendidikan, 11(1), 1–6. https://doi.org/10.24036/tip.v11i1.102

Kucharczuk, A. J. (2022). Social media’s influence on adolescents′ food choices: A mixed studies systematic literature review. Appetite, 168. https://doi.org/10.1016/j.appet.2021.105765

Loncar, P. (2018). Data-intensive computing paradigms for big data. In B. Katalinic & I.-I. TU Wien DAAAM International Vienna Getreidemarkt 9 Wien (Eds.), Annals of DAAAM and Proceedings of the International DAAAM Symposium (Vol. 29, Issue 1, pp. 1010–1018). Danube Adria Association for Automation and Manufacturing, DAAAM. https://doi.org/10.2507/29th.daaam.proceedings.144

Pribadi, B., Rosdiana, S., & Arifin, S. (2023). Digital forensics on facebook messenger application in an android smartphone based on NIST SP 800-101 R1 to reveal digital crime cases. In S. G. A. A (Ed.), Procedia Computer Science (Vol. 216, pp. 161–167). Elsevier B.V. https://doi.org/10.1016/j.procs.2022.12.123

Purboningsih, E. R., Massar, K., Hinduan, Z. R., Agustiani, H., Ruiter, R. A. C., & Verduyn, P. (2023). Perception and use of social media by Indonesian adolescents and parents: A qualitative study. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.985112

Putra, R. R., Handayani, S., Kurniawan, F., & Wadisman, C. (2023). ANALYSIS OF CUSTOMER DATA IN SELECTING POTENTIAL CUSTOMERS USING DATA MINING WITH THE K-MEANS. 125–135.

Putri, R. E., Morita, K. M., & Yusman, Y. (2020). Penerapan Metode Forward Chaining Pada Sistem Pakar Untuk Mengetahui Kepribadian Seseorang. INTECOMS: Journal of Information Technology and Computer Science, 3(1), 60–66. https://doi.org/10.31539/intecoms.v3i1.1332

Rahman, H. (2023). Multi-Tier Sentiment Analysis of Social Media Text Using Supervised Machine Learning. Computers, Materials and Continua, 74(3), 5527–5543. https://doi.org/10.32604/cmc.2023.033190

Sarfika, R., Wijaya, A., Putri, Z. M., & Saifudin, I. M. Moh. Y. (2024). Smartphone addiction and adolescent mental health: a cross-sectional study in West Sumatra province. International Journal of Public Health Science (IJPHS), 13(2), 521. https://doi.org/10.11591/ijphs.v13i2.23318

Sijtsema, J. J., Nederhof, E., Veenstra, R., Ormel, J., Oldehinkel, A. J., & Ellis, B. J. (2013). Effects of family cohesion and heart rate reactivity on aggressive/rule-breaking behavior and prosocial behavior in adolescence: The Tracking Adolescents’ Individual Lives Survey study. Development and Psychopathology, 25(3), 699–712. https://doi.org/10.1017/S0954579413000114

Silvestri, S. (2023a). A Machine Learning Approach for the NLP-Based Analysis of Cyber Threats and Vulnerabilities of the Healthcare Ecosystem †. Sensors, 23(2). https://doi.org/10.3390/s23020651

Silvestri, S. (2023b). A Machine Learning Approach for the NLP-Based Analysis of Cyber Threats and Vulnerabilities of the Healthcare Ecosystem †. Sensors, 23(2). https://doi.org/10.3390/s23020651

Yusman, Y., Anida, N., & Noor, Z. M. (2025). Pendekatan Big Data dalam Mendeteksi Deviasi Perilaku Seksual Remaja pada Platform Media Sosial. Prosiding Seminar Nasional Teknologi Komputer Dan Sains, 3(1), 48–52. https://prosiding.seminars.id/sainteks

Downloads

Published

2025-09-29

Issue

Section

Articles

How to Cite

Understanding Adolescent Online Sexual Patterns Through Big Data Analysis. (2025). Proceedings of The International Conference on Computer Science, Engineering, Social Science, and Multi-Disciplinary Studies, 1, 1-7. https://doi.org/10.64803/cessmuds.v1.2